Simplicity of a Vertex Operator Algebra Whose Griess Algebra is the Jordan Algebra of Symmetric Matrices
نویسندگان
چکیده
منابع مشابه
The radical of a vertex operator algebra
Each v ∈ V has a vertex operator Y (v, z) = ∑ n∈Z vnz −n−1 attached to it, where vn ∈ EndV. For the conformal vector ω we write Y (ω, z) = ∑ n∈Z L(n)z . If v is homogeneous of weight k, that is v ∈ Vk, then one knows that vn : Vm → Vm+k−n−1 and in particular the zero mode o(v) = vwtv−1 induces a linear operator on each Vm. We extend the “o” notation linearly to V, so that in general o(v) is the...
متن کاملA Characetrization of Vertex Operator Algebra L(
It is shown that any simple, rational and C2-cofinite vertex operator algebra whose weight 1 subspace is zero, the dimension of weight 2 subspace is greater than or equal to 2 and with central charge c = 1, is isomorphic to L(12 , 0) ⊗ L( 1 2 , 0). 2000MSC:17B69
متن کاملLie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2010
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927870902828637